Using shifted Legendre scaling functions for solving fractional biochemical reaction problem

نویسنده

چکیده مقاله:

In this paper, biochemical reaction problem is given in the form of a system of non-linear differential equations involving Caputo fractional derivative. The aim is to suggest an instrumental scheme to approximate the solution of this problem. To achieve this goal, the fractional derivation terms are expanded as the elements of shifted Legendre scaling functions. Then, applying operational matrix of fractional integration and collocation technique, the main problem is transformed to a set of non-linear algebraic equations. This obtained algebraic system can be solved by available standard iterative procedures. Numerical results of applying the proposed method are investigated in details

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOLVING NONLINEAR TWO-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS OF THE FIRST-KIND USING BIVARIATE SHIFTED LEGENDRE FUNCTIONS

In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...

متن کامل

Legendre Wavelets for Solving Fractional Differential Equations

In this paper, we develop a framework to obtain approximate numerical solutions to ordi‌nary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are uti‌lized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...

متن کامل

solving nonlinear two-dimensional volterra integral equations of the first-kind using bivariate shifted legendre functions

in this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear volterra integral equations of the first-kind is proposed. this problem is transformedto a nonlinear two-dimensional volterra integral equation of the second-kind. the properties ofthe bivariate shifted legendre functions are presented. the operational matrices of integrationtogether with the produ...

متن کامل

Legendre Wavelets for Solving Fractional Differential Equations

In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the technique.

متن کامل

the operational matrix of fractional integration for shifted legendre polynomials

in this article we implement an operational matrix of fractional integration for legendre polynomials. we proposed an algorithm to obtain an approximation solution for fractional differential equations, described in riemann-liouville sense, based on shifted legendre polynomials. this method was applied to solve linear multi-order fractional differential equation with initial conditions, and the...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره 1

صفحات  88- 101

تاریخ انتشار 2018-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023